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Abstract 

This report presents the author's results on the problem of using 
laser distortion data to estimate the wind profile along the path of 
the beam. A new model for the dynamics of the index of refraction 
in a non-constant wind is developed. The model agrees qudtatively 
with theoretical predictions for the index of refraction etatistics in 
linear wind shear, and is approximated by the predictions of Taylor's 
hypothesis in constant wind. A framework for a potential in-flight 
experiment is presented, and the estimation problem is discussed in a 
maximum Likelihood context. 

1 Introduction 
Remote sensing of wind profiles is a problem of interest in both the atmo- 
spheric sciences and flight research. Applications such as measuring wind 
profiles along the space shuttle launch trajectory, detection of microbursts 
a t  airports, and confirmation of computational fluid dynamics predictions in 
flight test require advances in remote sensing methods for wind profiles. 
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The use of lasers in remote sensing is now well established. There are 
two basic methods used. In the laser doppler velocimetry, backscatter from 
particles, water vapor, or boundary layers is used to measure wind velocity. 
Tje other method, considered in this research, uses the forward scattering 
of the laser beam, specifically the distortion of the beam in atmospheric 
turbulence, to measure the wind profile. 

2 Laser Distortion and Remote Sensing 
Wave propagation in turbulence was studied by Tatarskii [19] and others 
[16]. The solutions to Maxwell's equations are assumed to have a sinusoidal 
time dependence with frequency w, and the index of refraction fluctuations 
nl ( r )  are assumed to be frozen in time, and are modelled as a Gaussian 
random field with zero mean and a modified von Karman spectral density. 
The quantity V ( r )  satisfying 

obeys the forward scattering equation 

a i 
-Vz = -V2V, + iknl,zVz az 2k 

where z is the distance from the laser along the path of the beam, nl 
is the random index of refraction deviations, k is the wave number, and 
V2 = & + 6. Note that time changes are not represented in Equation 1. 

Equation 1 cannot be solved in general, so it is somewhat difficult to work 
with. Rytov [17] developed a linearization scheme for logV that is used in 
most of the remote sensing literature. Let Q = ZogV. Then 

i i a 
dZ@' = 2k 2k -V29, + -V@ V9, + iknl,, 

Then 

2 ~ e [ Q ]  = log ]VI2 = log I 

and 

phase(V) = Im[@] 
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where I is the irradiance, or energy distribution in the beam. The Rytov 
approximation keeps only the first order perturbation terms for 9 = log V. 
Hence let 9' be the solution to 

d i i 
-Q: = -v~Q: + -VQ: - VQ: , i ~ t  given 
a z  2k 2k 

The Rytov approximation for Q is the solution to 

d i i i 
-Qz a2 = -V2Qk, 2k + -VQz k VQ: - 2k -VU! - VQ! + iknl,z ( 2 )  

The Rytov approximation is valid in weak turbulence, or over distances 
of lese than about 100 rn 

For remote sensing of wind velocity, the time behavior of the index of re- 
fraction must be taken into account. Hence the index of refraction deviations 
are now n l ( r ,  t), and the scattering model will be 

In most of the remote sensing literature, it is assumed that the index of 
refraction field is frozen and moving with constant wind velocity U, which is 
Taylor's hypothesis. Under this assumption, 

m(r,t) = m(r t 

Remote sensing of the average wind velocity across the beam has been 
studied by Ishimaru [6], Lawrence [8],  Lawrence, Ochs and Clifford [lo] and 
Lee and Harp 1131. 

Remote sensing of the wind profile has received somewhat less attention. 
Lee [12] considered spatial filtering across the aperture of both the transmit- 
ter and receiver was able to obtain wind profile measurements that agreed 
well with anemometer data. Little and Ekers [9] and Briggs (31 decompose 
the index of refraction nl in the frequency domain, and assume that at  each 
frequency A, the index of refraction field is moving with velocity U(A) ,  hence 

Another approach has been to partition the atmosphere into layers, each 
moving with a different, but constant velocity. 
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3 Problem Statement 
There are three problems to be addressed in this study. The first is the 
construction of a model for the dynamic behavior of the index of refraction 
in wind shear, or non-homogeneous winds. Clearly, Taylor’s hypothesis will 
not be of use in determining wind profiles, and a new model for the dynamics 
and statistics of nl ( r , t )  is required. Such a model must take into account 
the interplay between wind shear and the statistics of the index of refraction 
field, yet still be simple enough for engineering calculations. 

The second problem is the design of an experiment to measure wind pro- 
files over a given distance using existing, available technology. The distances 
of interest are 5 - 10 m, 100 - 500 m, and 1 - 5 km. In this report, the focus 
will be on distances of about 5 - 10 m. 

The third problem is the estimation algorithm for the wind profile. The 
desired algorithm should be fully automated, and operate with as much speed 
and as little computing requirements as possible. 

4 A Model for the Dynamic Behavior of the 
Index of Refraction in Atmospheric Tur- 
bulence with Wind Shear 

In order to use the distortion of a laser beam to meaaure wind velocity, it 
is necessary to model the time dependence of the index of refraction field in 
wind. Usually this is done by assuming that a ‘frozen’ index of refraction 
field n is moving with constant uniform velocity U, hence 

n(t, r) = n(0, r - U t )  

We observe the distortion of the phase or magnitude of V ( t , z ) ,  where V is 
the solution to 

6 i z V ( t ,  2 )  = p q t ,  2 )  + ik(n(t ,  2 )  - l ) V ( t ,  2) 

Clearly if there is any wind shear, that is the wind velocity is not uniform, 
and we wish to estimate a wind profile, then a different dynamic model for 
n is needed. 
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It is well known that in wind shear, which in this report is considered to be 
any inhomogeneity in the mean wind velocity (time average), the turbulence 
field, and hence the index of refraction is no longer isotropic. This effect was 
studied by Trevino and Laiture [20] in the case of microbursts. The model 
used must take into account this effect. 

Tatarskii [19] showed that index of refraction fluctuations were propor- 
tional to fluctuations in the potential temperature, hence we consider a dy- 
namic model for temperature fluctuations. 

4.1 A Dynamic Model For Temperature And Veloc- 
ity Fluctuations 

A brief derivation of the dynamics of the temperature and velocity fields is 
taken from Lumley and Panofsky [14] and is presented in this section. Let 
T denote temperature. Then 

T = To + T' 

where To is the nominal temperature, which takes into account the expected 
changes in temperature due to altitude, and T' is the fluctuation. We also 
express T' as 

where 

TI = T I  + e 
denotes the average value and 0 the random fluctuations. 

Similarly, let U be the velocity field, with 

u = u + u  
The dynamic equations for u and 8 are 

- -1 ic = -(VQ - (vUp - (vu)u + (vu)u + -VP* + u ~ u  + Le(o o 1)' 
Po TO 

where po is the nominal density, P is the pressure, Y is the kinematic 

In the next section, the equation for 8 is used to derive a stochastic model 
viscosity, and IC is the thermal diffusivity. 

for the temperature field. 
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4.2 A Stochastic Model For The Temperature Fluc- 
t uat ions 

In the frozen temperature field models, 8 is taken to be a locally isotropic 
and homogeneous gaussian random field with zero mean. Requiring our 
dynamic model to have the same statistics in the constant wind case u(r)  G u provides some rational for choosing a dynamic model. 

In Equation 3 the last term represents a transfer of energy from the mean 
temperature gradiant by means of turbulence. The third term represents the 
transport of the temperature fluctuations by the turbulence, with a correction 
for the mean. 

The main idea of our model is to represent the third and fourth terms as 
a white noise in time and an isotropic homogeneous random field in r E R3. 
Hence our model is 

e, = &AO: - (ve,)O + N: (4) 
In Equation 4 the first term describes the diffusion of heat, the second 

term describes transport of the temperature field by the mean wind, and the 
last term describes the disturbence of the temperature field due to turbulence. 
The ‘in time’ correlation of the third and fourth t e r n  of Equation 3 is not, 
of course, that of white noise, but because n << 1 the system described in 
Equation 4 is a low pass filter, hence the white noise assumption is reasonable. 
The model is now completely specified, except for the covariances of 80 and 
Nt . 

Suppose for a moment that there is no wind. If a steady state covariance 
for 0 exists call it R, and its spectral density P. Let B be the covariance 
predicted by the frozen field model and @ the corresponding spectral density, 
with 9(0) < 00. & obeys the equation 

k t ( t . 1 -  ~ 2 )  = n(&+ ~ 2 ) ~ t ( r 1  - r 2 )  + R N ( ~  - r 2 )  

where R N  is spatial covariance for N with corresponding spectral density 
PN. Since N is spatially homogenous, 8 will be also, hence we can write 

&(r) = 21cARt(r) + RN(r) 

If we take the spatial spectral density for N to be 

P N ( A )  = 2nlX12@(X) 
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then there will be a steady state covariance R, with spectral density 

or R = B. Hence, in the no wind case, the spatial covariance agrees with 
that for the frozen field model. 

If we assume that 0 is a nonzero constant, we again have P(A) = @(A). 
Hence this model agrees with the frozen field model for constant wind, a t  
least when looking at only the spatial covariance. 

Let St be the semigroup generated by EA on the Banach space of Fresnel 
class functions on R3. Finally, assume that the wind is constant, O(r) e fr. 
The space-time covariance for fl is then: 

,!?[e& r)e(t', r')] = [S(t - t')B](r - 0(t - t') - r') , t > t' (5) 
In the frozen field model, this covariance is B(r - o(t - t') - r'), which 

is the prediction of Taylor's Hypothesis. Since Taylor's hypothesis is widely 
applicable, even in the presence of some wind shear, it is important for our 
model not to deviate from it too drastically. In our case, the thermal diffu- 
sivity is 

hence our covariance for 8 should not deviate too much from Taylor's hy- 
pothesis in constant wind. 

K w 5 x 10-~rn2/s 

4.3 Covariance Calculations For More General Winds 
The case of primary interest in this discussion is when the wind 0 is not a 
constant, but varies in space. We assume that the flow is incompressible, 
hence V - U = 0. In this case, the covariance €or 8 obeys 

R t (  r1, r2) = K(Al+AZ)Rt(rl, rz)-V1Rt(r1, r2)U(r1)471R*(r1, r2)U( rZ)+RN(rl-r2) 
(6) 

It is difficult to proceed further with this unless a special form is assumed 
for u(r). It is known that a linear wind shear results in a loss of isotropy in 
the turbulence field, and we expect the same for temperature. Let 
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In this case the covariance for 8 is translation invariant, so 

Rt(7.172) = Rt(n - r2) 
and Rt obeys 

&(r) = 2nARt(r) - VRt(r)Vlr + RN(r) (8) 

Let Tt be the semigroup generated by 21cA - U1r - V on the Fresnel class 
functions. Then 

[Ttf](r) = E[f(e-u"r + zt)] 

where z: is a Gaussian random vector in R3 with zero mean and covariance 

If there is a steady state covariance in this case, it will be 

R(r) = / ~ ~ T , R N  dt 

the last equation being obtained by a change of variable, and the fact that 

leu;'l = w p ( t  tr II.) = 1 

by our incompressability assumption. Hence we can write the steady state 
spectral density as 

P(A) = 21c Jm 0 e z p ( - 2 ~  leu;'A12 ds)leu:'XI29(euitA) dt (9) 

The integral exists for A # 0 since the function 
t 

ezp(-2Ic 1 leuf'~12 cis) 21cleuft~12 
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is a probablility density function in t ,  and Q is a bounded function. 
Note that isotropy is lost except a t  the higher frequencies. This agrees 

with the observations of Lumley and Panofsky [14]. 
The model presented above is, in the belief of the author, an improvement 

on Taylor’s hypothesis, which ignores time changes in the temperature and 
velocity fields not due to wind velocity, and the effects of wind shear. For 
constant wind, the model agrees well with Taylor’s hypothesis. This model 
is represented as a state space linear system, and there is a great deal of 
literature on the estimation of parameters for such systems. 

5 Proposals for the Design of an Experiment 

In this section, concepts for a remote sensing experiment are presented and 
discussed. 

The distance over which the laser propagates is critical to the type of sen- 
sors needed. For example, the irradiance distortion at  5 or 10 m is very small, 
and a t  this distance it is better to measure phase distortion. Over larger dis- 
tances, it may be more convenient (cheaper) to measure the irradiance, or 
amplitude distortion due to index of refraction fluctuations. 

In this study, wind profiles over 5 - 10 m were of particular interest, hence 
an experimental setup for this case is presented. 

I t  is well known that atmospheric turbulence has dramatic effects on the 
performance of heterodyning receivers, which are sensitive to phase distortion 
(see Leader [ll]). A concept for an experimental setup is given in Figure 
1. The distorted beam is compared with a local oscillator by means of a 
heterodyning interferometer, and a beam splitter. 

For in flight experiments, the setup in Figure 1 is impractical because of 
the massive, voluminous, delicate equipment needed for the receiver. For an 
in flight experiment, it might be desireable to measure the flow over a wing, 
and the setup in Figure 1 would require putting a laser and interferometer 
on the wing tip, which is clearly infeasible. Another posibility is to locate 
the laser and interferometer close together and bend the beam back using a 
mirror. Laser beams with straight and ‘folded’ paths have been compared 
by Smith and Pries (181. Distortion of beams with folded paths using corner 
reflectors and flat mirrors have been studied by Gamo, Jagannathan and 
Majumdar [4]. 
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Unfortunately, it is necessary to use a flat mirror for wind velocity mea- 
surements. A corner reflector would invert the beam, so on the first half 
of the folded path, the wind appears to move in one direction, and on the 
second half appears to move the other way. Some sort of active control of 
the flat mirror and the laser will be required due to vibration of the wing. 
An experimental setup using a such a folded path is shown in Figure 2. 

Over longer distances, less expensive receivers that detect the irradiance 
can be used in configurations similar to those in Figures 1 and 2 without the 
need for a reference beam, or local oscillator. 

6 Estimation Algorithm 
In this section, an approach for maximum likelihood estimation of the wind 
profile is discussed. There are many advantages to using maximum likeli- 
hood to  estimate parameters for dynamic systems, including efficiency and 
consistency of the estimates whenever these conditions can be satisfied. The 
models described above for the index of refraction and laser distortion de- 
scribe a linear state space system with a non-linear observation. The ‘plant’ 
model is 

k , t  = rcAn1,t t Vn1.t U t Nt (10) 
where the function U(r) is the unknown wind profile. The observation 

equation can be written as 

v( t )  = C(n1,t) + Np (11) 
where the form of C depends on our experimental setup, and whether 

approximations to the forward scattering equation, such as the Rytov ap- 
proximation, are used. N o  is the observation noise, and is assumed to  be a 
white Gaussian noise. 

The problem of estimating the wind profile is now in the form of esti- 
mating an unknown distributed parameter of a linear dynamic system from 
a non-linear observation plus noise. 

There is a great deal of literature on the estimation of parameters of linear 
dynamic systems with linear observations, such as Maine and Iliff [15]. This 
problem has also been considered for infinite dimensional , or distributed 
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parameter systems, such as we have here [2, 71. A dated, but still useful 
review is found in Goodson and Polis [5]. In general, this is still an  open 
research problem. 

The observation equation can be linearized using the Rytov approxima- 
tion. Suppose the experiment measures the phase distortion of the beam a t  
m points. Then the observation can be approximated by 

where K(r) takes on values in R". Let St be the semigroup generated 
by KA + U * V on the fresnel class functions 3. Then the covariance of v is 

I + R  

Where 

R(4s)  = J J K(t)[S:RnS,'](r,r')K*(r') dr dr' 

where R,, is the steady state spatial covariance of nl. In the constant 
wind case, R n  corresponds to the modified Von Karman spectral density. 

One possibility is to use the Kalman filter to calculate the likelihood ratio 
for v given U with respect to u with no signal. The result is (Balakrishnan 
Ill) 

(12) A(U)  = e /'[cttl 0 ,,,v(')]- k l ~ t t l , ,  12- $Tr.CP(r)C* cia 

where izl is the K a h n  filter estimate for nl and P is the corresponding 
error covariance. Both izl and P will be functions of U. 

This method presents difficulties from a computational perspective, be- 
cause it requires the estimation of an infinite dimensional state (or large 
finite dimensional approximation), and solution of an operator valued Ric- 
catti equation for each iteration. This is very expensive in computation time, 
and may have numerical stability problems as well. 

One solution to this dilemma is to make the very realistic assumption 
that we receive sampled data 
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hence a t  time step n we have n x n data points that form a Gaussian 
random vector with zero mean and a covariance dependent on 17. Let u" = 
{ ul, u2 - - - u,,. Then a direct approach can be taken to solve 

max p( u" I U )  
U 

Note that this will involve assuming some form for U ,  such as a p'th order 
polynomial, with the incompressibility constraint, 

or a piecewise linear form. 

7 Conclusion 
The problem of estimating wind profiles from laser distortion measurements 
was considered in this report. A suitable index of refraction model was 
developed and presented. Two concepts for an experiment were presented 
and the resulting estimation problem was discussed in a maximum likelihood 
context. Further research is required to design the hardware and optics for 
the experiment and to develop a maximum likelihood estimation algorithm 
for the model presented. Both of these are important research problems at 
this point in time. 
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Beam Splitter u 

Figure 1: Wind Profile Measurement Experiment for Distances Under 10 m. 
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Flat Mirror 
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Figure 2: Wind Profile Measurement Experiment for Distances Under 10 m 
with Folded Path 
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